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The problem of time-optimal stabilization of a perturbed nonlinear system by 
controls bounded by a sphere is considered. The unperturbed system whose 
optimal control is determined using Schwartz’s functional inequality [I, 21 is 

assumed to belong to the class of controlled systems with invariant norm [I] . 
An effective algorithm for approximate analytical derivation of Bellman’s 
function and of perturbed optimal control based on the sufficient conditions of 

optimality of the dynamic programming method [33 is proposed. A procedure 

is developed for determining the optimal phase trajectory by successive 

approximations. First approximation solution of the problem of quickest 

braking the rotation of an almost dynamically symmetric solid body is derived 

with the perturbing moment of viscous friction forces taken into account ‘[3]. 

1. S t & I e m c n t 0 f t h Q p r 0 b 1 e m . Let us consider the system 

y’ = fo (Y) + &f (Y) + II + 8~’ (Y)] Y = (1.1) 

Y (Yr,. ., is phase whose are in bounded 

which point = eis numberical (I co, >O); 
is unit fo, f are vectors, andF is a matrix; the dot denotes 

differentiation with respect to time t > 0, and go is the initial phase state of 

the system. It is assumed that u is the control vector function of dimension TZ > 1 

which satisfies the constraint 1 u I26 uo2, u. = const s It can be assumed without loss 

of generality that u. = 1 and, also, that functions fo, f and Shave a reasonable 

number of derivatives with respect to y in the indicated region. The dependence of 

these functions on parameter E can be continuous, but is not defined here. 

It is assumed that the uncontrolled unperturbed system, i. e. system (1. l), when 
z4. EZ 0, and e = 0 has the invariant norm [l] 

q’fo b) - 0, r = !/h-l, h = I!/[, h E [O> ho19 ho = IYol (1.2) 

where TJ is a unit vector (column vector) directed along yector y, and 9’ is a 
transposed vector. It follows from (1.2) that h (t) =i ho = con&, since h2’ = 0 and, 
consequently, 1 yi (t) I< ho- Note that in mzhamcs forces fa defined by (1.2) are 
called gyroscopic forces ,[5] whose power at any-i&‘ant of time is zero. 

‘Ihe design of a time-optimal control which would bring the unperturbed system 
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(1.1) to the coordinate origin is determined by the inequality I~‘u 1 < 1 

(the Schwartz inequality Cl, 21) 

uo” (Y) = - rl, uo* [tl = - rl0 (t) -= - J/o” (t, yo) / ho” (t, ho) (1.3) 

ho” = h, (I - * I To*), To* = ho, %” ftl = a,* (&* (t, yo)) 

where To* is the time of response, yo* (t, yO) is the unpreturbed phase trajectory, 

and JQ* (TO*, hoI = 0. t Zn this problem the Bellman function, i, e. the positive 
smooth solution of the related Cauchy problem for the Hamilton-jacobi equation 
Cl] (Bellman equations [31), is To (y) = h (see Sectn. 3). Note that the use 
of control (1.3) for stabilizing the perturbed system (1. I.) generally results in an 
error fJ (8) relative to the phase trajectory and to the functional of the time of 
response 2’. This statement follows from the equation 

h’= -1 + q’ (f - Fq), h (0) = ho (1.4) 

and from the boundedaess of the multiplier at e in (1.4). 
In applied problems it is often necessary to obtain a more accurate solution of the 

problem of optimal stabilization of a perturbed system, taking into account parameter 
f. We have the following problem, Determine the time-optimal control law 
u = u (y, e), the minimum time2’ = T (yo, e), and the perturbed phase 

trajectory y = y (t, yet e) with@ (0,. yo, e) =.gory (II, yo, E) = 0) and specified 
accuracy with respect to the small parameter e , 

Problems of optimal motion control of systems in a si~lar.formu~ations were 
investigated in [Z, 4,6-83 by the method of perturbations. 

2. Controlled rotationsof asolid body. Asanexampleofa 
controlled punperturbed system with invarient norm we consider the system of Euler’s 
dynamic equations[l, 9,101 

IIOl’ + (1s - I,)osos = M,, Ul (0) = 010 (1, 2, 31 (2.1) 

where Mi 5 bi7.J; (i = 1, 2, 3)are the controlling moments bf = const>O, and 
ZL~ are co&o@ bounded by the inequality ~1s $I us2 + ass < 1. The problem is 

to bring the phase point of the system from the initial state oi (0) = wio to the 
coordinate origin 02 (2’) = 0 in the shortest time T, in other words, to determine 
the time-optimal stabilization of sysbm (2. I), 

introducing variables Zi = &bi-’ g where Li = IiOi are components 
of the angular momentum vector defined in coupled axes, we reduce system (2.1) 
to the form of the unperturbed equations (1.1) 

21’ f (1, - 12)12-‘I,-~b2b,b,-“z,z, = t&l, 21 (~) = L,,bt-1 (2, 2, 3) (2.2) 
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The invariance condition (1.2) for system (2.2) is satisfied if parameters Ii, 

and bi satisfy the relationship 

I’, (I, - T&I,%,2 -/- I, (11 - 1,)6,%ss + I, (I, - I,)b,sb,s = 0 (2.3) 

The set of such parameters is nonempty. Let 1s > f2 b 11 > O+ 1 !ien for 

-r,> 1 I equality (2.3) can be represented in the form 

This formula is meaningful if bss is fairly large, i.e. when for a given ba2 

the inequa~ty 6s2 > bs21s1,-1 (I, - II) x (1, _ I,)-1 is satisfied: the 

same holds for b,s. 

Let us consider some particular cases in which the invariance condition is 

satisfied. 

1) fn the case of a solid body with arbitrary moments of inertia 1s 2 f&I, 

equality (2.3) is satisfied when: a) ij, = b, = b, = b (tee [1,4,8,10]); then 

vector zi (i = 1, 2, 3) and the moment of momentum vector L4 : Li = bzi; are 
collinear; and b) when b, = bf,fm3. zr = o1 i @da) with bI < b, < ‘6,.1,2,3) 

2) For a dynamicar.ty symmerric body 1, =_ 1s = 10 equality (2.3) is satisfied 
for bl = b, = b; I,, and &are arbitrary (I, < 214, and when I&-l = I,b,-l 
vector zi and the angular velocity vector @i : zi = I&-‘as are collinear (see [ 4,811. 

3) In the case of a spherically symmetric solid body (I, =’ I, = I, = 1,). 
formula (2.3) is valid for any bl, 6,, b, [4,8 1. 

Thus when condition (2.3) 1s satisfied, the optimal braking of solid body 

rotation is defined by an expression of the form (1.3) 

The optimal trajectory z1 (t) can be derived from the known formulas for 

uncontrolled motion of a solid body [4,8,9,101. In the general case 1) the free 
rotation is defined by elliptic equations f93. In fact, if oio is the general 

solution of system (2.1) with Mi z 0 then 

Li” = Jf,Oi’, Oi” = 0j.O (t + 7, Lo, E”) (2.5) 
where oi* is a 231, -periodic function of phase 9 = Q (t + TZ), and the frequency fi 
depends on constants of the modulus of the moment of momentum Lo and energy,EF 

These parameters and the phase constant r are determined by the initial conditions 

(2.12 
Solution for the controlled system (2.1) when US = UE* (see (2.5)) is of the 

form Li = Zii, where functions li satisfy the system 
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_!k+A&!Z_ Z& = 0, 11(O)= % (1, 2, 3) 

As the result, on the basis of (2.5) we obtain for the optimal trajectory the 

formula. 

Li = zLi” (S + 8, L'~g-l, E"z~-') (i = 1, 2, 3), 8 = const 
(2.6) 

Note that all components of the angular momentum vector (2.61, as well as the 

rate of variation of phase Q , simultaneously vanish when z = 0, i.e. at the 

instant of time t = TO* [4,3,101. 

3. Derivation of the approximate optimal control 
by the method of dynamic programming.Solutionoftheproblem 

of defining the time-optimal stabilization of the perturbed system (1.1) consists of 

finding a nonnegative differentiable Bellman function 2’ (y, a) which satisfies the 

Hamilton-Jacobi equation [l] (the Bellman equation [3]) with boundary condition 

II+EP(y)lu}= -1, T(O,e)sO (3.11 

where r3T / dy is a column vector, and the expression dT / dy ,,f, and similar 

are scalar products. The minimization of expressions in braces in (3.1) yields the 
closed Cauchy problem 

-g- If0 kY> + Ef (Y)l - 1 -$1+&(y)]\ = --1, T(O, E)-0 (3.2) 

and the formula for optimal control 

u*= -(I+&F’)(~)‘Ig++ q 

The solution of problem (3.2) is expressed in the form of expansion 

T (~7 e) = J”a (Y) f aTr (Y) f - 4 * + eiTj (y) + . . ., 
Fj (0) = 0, j = 0, 1, . . . 

(3.3) 

(3.4) 



where the unknown coefficierxts Tj and fitnctiom f and F(s~ Se~tn. 1) may 

continuously depend on parameter E l The form of their dependence is not 
indicated. Functions T, (y) are obtained by successive solution of the coupled system 
of equations in partial derivatives [4,6]. 

Functiorxs Vj in (3.5) are determined by solving preceding equations, since 
at any j-th step they are calculated in terms of functions obtained in preceding 
steps, i. e. f, P and dTo / by, dTx / &y, . w .) K!‘~_, I dy, e* g, 
for j = 1 

For any arbitrary subscripts j = 4, 2, . _ functi;iom Vi (y) are determined by 

formulas 

From formulas (1.3) and the defirtition of Bellman’s function T follows that 

2”6 @v) = h = 1 Y 1 is the solution of the first Cauchy problem (3. S>, i. e. To 

the Bellman fun&on of the ~~~~r~rbed problem of time-optimal stabilization. Sfhce 

a&/&‘1 = i,h ence the formal expansions (3.4)~(3, “l> obtained above are valid for 

fairly small values of parameter 8. Punction T, defines optimal control in the 

form of u”in (3,3) with an error 0 {G): UQ* = -_ri (see 1**& 
Solutions for the Cauchy problem f3.5) for j > 1 are obtained successively, 

as in [4, S], using the method of characteristics [ll, 123. The equations of 

characteristics reduce to the form 



Time-optimal stabilizaatlon of a perturbed system 651 

Let the known function y * be the general solution of system (3.8) of the form 
(c is the general integral) 

Y* = Y* (h Yo), Y* (ho9 Yo) = Yo, 1 y* (ho, Y,) 1 = ho (3.9) 

(c = c (Y), c’ = (Cl, * * * 9 GP-1)) 

The sought solutions are then determined by squaring 

h 

Tj(y)=-_SVl(y*(z,y*(h,y)))dz, h=IYI, i=l,2?... (3.10) 

(Y* (h, Y) =“y) 

Thus for determining coefficients Tj in (3.10) of expansion (3.4) it is 
necessary to be able to derive the general solution of the unperturbed controlled 
system (1.1) with u = UO* = -q (see Sects. 2, 4, 5). 

To prove the method of deriving the approximate solution of Eq, (3.2) with 
specified boundary condition, developed in Sectn. 3, it is necessary to consider the 

problem of bringing the phase point of system (1.1) to the p -neighborhood of the 
coordinate origin Y = 0 in the shortest time and, then, pass to the limit p-+ 0. 

This yields the expressions of coefficients of expansion (3.4) that coincide with those 

in (3.10). 
The vector function of optimal 

form of expansion similar to (3.4) 

u* (y, E) = --‘1 + EU1* 

-q + &U(I)* (Yt e) 

control u* (y, 8) can be expressed in the 

+ . . . + dUj” + e’+’ . . . Ez (3.11) 

where coefficients Uj” (y) are determined in terms of derivatives of functions 

Tj (Y) after the substitution of (3.4) into (3.3) into (3.3), and equating 

coefficients at like powers of 8. For j = 1 we have (see (3.7)). 

24; (y) = q’ (z$ - q 2) + u; (y), u; = rl’ (W1- q 

For any arbitrary j > 1 functions Z.Q* (y)are 

2$‘(y) = q’ ( 8Tj --p-g2 > + u;(Y) 

(3.12) 

(3;13) 

where functions Uf (y) are defined similarly to functions Wj in (3.7) and 
depend on 

F, 8To / By = q’, dT1 / dy, . . ., dTj_, / By. 
R e m a r k. If the analytic form of the generating solution (3.9) is not known, 
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the algorithm of the approtimate calculation of Bellman’s function can be obtained 

as follows. Coefficients Tj in (3.10) are determined for the fairly dense set of 
points VA: Yil, - . ., &kz, :: -7 Yiifr. = ho _ where the first subscript 

i = 1,2, . . .) n is the ordinal numbe: ot the component of vector y, the second 
subscript ki denotes the ordinal number of the separation point, and iVi is the 
number of separation points of the interval of the i- th component variation. Then we 
determine function y* which is the set of solutions of the Cauchy problem for the 
unperturbed controlled system. 

y* = f. (y) - r)r y (0) = yk (k = (k,, . . ., k,), 1 Q ki < Nil (3.14) 

numerical integration determines also that set in the discrete set of points of 
argument E F_ [O, kkl 

&k = Y, (fit Yk), 1 = 1, . . .) N (k), hi = I YI;! 

Since RI = kir - iI, the sought set of functions y* (h, y) in (3.9) specified in 
the discrete set of points hl is of the form 

ylk = Y, bk - hl, Yk) = Y* (hi, !/k)v 0 < h < hi, 
Finally, we integrate in conformity with( 3.10) functionS irj (k* (hi, yk)_ of the discrete 

argument hr which depends on the discrete vector parameter Y1;7 and obtain 
coefficients ‘+j (y;J specified in a reasonably dense set of points IYkI<&. The 
integration may be carried out by the method of rectangles or by some other more 

accurate scheme. The approximate calculation of controls u* (y, E) (3. J.1) by 
formulas (3. X2) and (3.13) may be carried out by finite difference differentiation or 

some other means appropriate for solving the system in variations for problem (3.14). 
A similar algorithm of approximate determination based on dynamic programming 

method can be formulated for discrete systems of optimal control most suitable for 

computer calculations. However that problem requires separate consideration. 

4. Derivation of the approximate optimal trajectory. The substitution of the 
optimal control U* (y, E) (3.11) into (1.1) yields the closed Cauchy problem for 
the determination of optimal phase trajectories y = r~ (8, y,, e), which may be 
represented in the form of expansions or successive approximations in powers of 
parameter e. Let us assume that the general solution (1.3) of the unperturbed 
controlled system (1.1) (in particular, in the case of system (2. 1) this is function Idi 

(2.6)) or the complete system of integrals of the (3.9) type are known. The 

perturbed optimal trajectory or the osculating variables (integrals) c and the ” phase” 

1~ can be determ~ed in the form of quadratures with an accuracy with respect to 

e equal to that with which the vector function of control u* (Y, e) was 

calculated. 
Thus the solution of the [problem ofl unperturbed controlled system go* (t, Y,), 

go* (0, yo) = go is krw.m Solution of the perturbed system (1.1) is formulated 
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as y = yo” + 8X (t, 8) 
the Cauchy problem 

The unknown vector x is obtained as the solution of 

where, as previously, the dependence of functions f, F, z+)*, and P is not 
defined; function P is known with the required degree of accuracy. Solution of the 
quasi-linear system (4.1) is obtained by successive approximation using the scheme 

Lx1 

Xk (t, E) = xg (t) + EX (L) j X-l (f) P (f, xg-1 (f, 8)) dt’ (4.21 
n 

x*(t) = x(t) <i x-*(f) (f” - F;, + &) I&‘, k=l,Z,...,j--1 
0 

where 

X @) =%I* @&is the known fundamental matrix of solutions of the unperturbed system 
(4.1). The successive approximations 5 k (4.2) determine for fairly small 1 E 1 the 

Unique Solution of system (4.1) z* (t,, e) with an error 0 ($), and ZJ* (t, e) = yo* (t, 
Q/- 8~’ (t, E) is the system perturbed optimal kajectory determined with the same ’ 

error Q (ej+l) as that of the control function U* (y, e) (3. J-1). 

The solution of the problem of determining perturbed integrals of the (3.9) type 
defined by the equations 

(4.3) 
c-z E$(p($), W.=1+E$cp($), d(O)-:C(Y,~~ W)=o(Yof 

where 

* z= o (r~) = t + rJ is a time dependent integral, reduces to quadratures similar to (4.2). 

The approximate solution of system (4.3) is obtained by successive approximations 
by a scheme of the type of (4.2) Cl23 

Thus the constructions derived above reduce to quadratures when the general 
solution yo* (t, y,) for the unperturbed controlled system (1. I.1 is known. It 
should be noted that (as shown in Sect. 2 for Euler’s equation (2.1) in certain 

important applications the general solution of the controlled system 
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Y’ = fo (3) - rl? Y (0) = Yo 
(4.5) 

can be obtained on the basis of the known uncontrolled motion u= v (t, a, ho), that 
satisfies the system with invariant norm 111 

In fact (see Sectn. 2) the substitution y = ho*w, where w is an unknown 
vector function, reduces system (4.5) to the form 

w’ = f. (~o*w) f ho*, w (0) = ~~*-l, 1 w 1 = 1 t4* 6, 

Let f. (y) be a homogeneous function of power m > 1 of y i. e,fs (vy) = ymfo (y). 
The system of Eqs. (4.6) then assumes the form 

g = f. (w), s = -$ (h: - hy), w jszo = y&j’ 

AS the result, we have for yo* the expression 

YO” (t, YO) = ho” (t, h,)v (s, o, 1), u (0, a;, 1) = yoho”+ t4* Q 

where u is by assumption a known function that defines the uncontrolled motion. 
The particular case of a system with invariant norm for which m = 2 was considered 
in Sect. 2. 

5. Braking of rotation of a solid body with allowance 
for perturbing moments; Theappr~matesolutionoftheproblemof 
time-optimal stabilization of a solid body almost dynamically symmetric isinvestigated 
with allowance for the perturbing moment of viscous friction forces [4.8], It is assumed 
that the parameters of system (2.1) are 

IIt2 = lo(l + ~~laft &,2 = bo(f + f$l,Z) 
(5.1) 

~ri = biui - e i AijCOj (i = 1, 2, 31, 13#Io 
j=l 

wheren(}el<f) 
is a small numerical parameter, z.l* x2. Bzt and [3s are constant numbers 
of order unity, and (e&J is the tensor of the perturbing moment of viscous friction 
forces Ca nonnegative definite constant matrix). When E = 0 the solution of the 
problem of time-optimal braking is 
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Ui* = -Xjh-l, T, (x) = h = 1 x 1 

Xi = IiOJibj-l, ho* = ho (1 - t/ To*), To* = ho, ho = 1 50 ) 

The optimal phase trajectory is of the form (see Sect. 2 and (4. 7) 

x1 = ho*u, = (1 - t 1 To”) 1 L-Cal ] cos (8 + z), cos ‘G = 210 IxoJ_ 1-l ( 5.3) 

+_ = hs*us = (1 - t / To*) 1 xoL 1 sin (so + T), sin T = z2o I SOL 1-l 

X 3 = ho"vs = (1 - t/ T,*)x,,, s= = dx,ot (1 - tl (=,*)I 

d = (I3 - ~o)b, / (IOIJ 

The optimal control expressed as a function of time is obtained from formulas 

(5.2) an d (5.3) 

ul?e [tJ = - 1 xoJ_ 1 ho-’ cos (5-O + T), u2* [tJ = (5.4) 
- 1 xoI 1 ho-’ sin (s”+z), us* [tT = -x3oho-1 

When s # 0 system (2. l), (5.1) reduces to the form (1.1) [4,8J 

Xl’ + c&x3 = Ul + ecp, (x) + EUlX~X3, 510 = I,w,,b,-l (5.5) 

x2’ - &lS, = 7J2 + q2 (4 + ca22153, x20 = I,o,ob,-’ 

x3 ’ = u3 + E’P3 (4 + q51x2, x30 - 13QOh-l 

where ‘pi are transformed components of the perturbing moment of viscous friction 
forces (without the e multiplier) defined by 

cp,(x) = - 5 hijXjt 
j=l 

hij = RijIilbr’ (i, j = 1, 2, 3) 

The constants ai are determined by formulas 

&al = d -- Is- I; b&s I,- I, bibs 
--7 Ea2=-- 

12-Ix blbp 
1213 1113 h Ea3 = -1,12x 

Let us derive the solution of the problem of the first approximation optimal 
control T (x, e) = h -I- cTl -I- ~2 . . . . In conformity with (3.6) function VI (x) 
which appears in the definition of coefficient T, (x) (3. lo), can be decomposed in- 
to two termsv, = VrG + vfl that define perturbations induced by gyroscopic moments 
and friction forces, respectively, 
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(5.6) 

As the result, for Tic (T, ‘~11 T,t,; -f- T,F) we obtain ~4, S] 

For zsO + 0 this formula reduces to Fresnel integrals [13], Formula (5.7) 
is derived using the expression for solutions of the form (3.9) 

x1 = h (‘ill0 cm so - qzo sin so), x2 = h (qlo sin so -I- q2Q cos sQ) (5. a) 

53 L= hrj3o (S@ = 1~~~~2~3~, 11,) ‘= q&)-~) 

using (5.6) and substituting (5.8) forf TIP iri (3.10) we obtaain.‘the final formula 

IL 

ai / ‘=1 ct,i 1-z a ‘w, %)X;(4 qo,q (5.9) 
i, j=r 0 

After integration we substitute in (5.9) for components of vector qo, their 
expressions in (5.8) 

RX. coefficients aij (2, Q) in (5.9) are explicitly obtained, e. g. 

ff q3@ is SmaU (1 r)~ 1 < l~,formu~s (5.7) and (5.11) in linear and kubic 
appro~imati~ with respect to q30 and ‘1 h i) req&ively, are considerably simplified 
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Then, using the known expression for the coefficient Ti (z) we determine by 

formula (3.12) the vector function * which 
U* = -TjU'+ EU,* in 

defines the optimal control 

the first approximation with respect to E , i. e, with an error 0 (8”) with respect 

to the functional and phase trajectory. The first approximation phase trajectory is 

determined by the quadratures (4.2) using the known general solution (5.3) for a+ of 
the unperturbed system (5.5). Note that the moment of friction forces reduces the 

time of response T [4, S]. 
The procedures developed here make it possible to solve approximately in 

quadratures problems of time- optimal stabilization of perturbed systems of the form 

(1. l), (1.2). Their application requires the ability to formulate the general solution 
of problems of unperturbed controlled system with invariant norm, although in a 

number of important applications it is sufficient to know only the uncontrolled motion. 

Note that proposed approach makes possible the solution of the problem of 
designing [optimal controls] for systems of a more general form than (1.1). such, as 

for instance, 

2’ = f,, (6 4 + 4 0, 4 + b (t, h) LS (t, 5) + eF (t, 41 u 
5@0)=50, h=(sl, lul<l 

where f,,, and f are vector functions, b is a scalar function, and S is an 

orthogonal matrix. All functions are assumed to be reasonably smooth in the 
considered region of argument variation. A more general assumption is made about 

function f0 than specified by (1.21, namely, q’fo (t, z) = ‘p (t, h) (see [l, 81). In 

the case of an unperturbed controlled system with invariant norm cp zz 0. 
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